第一次受到优秀产品设计的震撼,令我终身难忘。那时我刚加入 Apple,还在熟悉业务。工业设计团队的一名成员来访,他给我看了一个产品提案的仿制模型。“哇哦,”我说,“我想要一个!这啥东西呀?”
那次经历让我感受到了设计的力量:我还不知道那是什么东西,它就令我为之激动和狂热!这种让人不禁叫出“哇哦”的设计,只来自有创意的设计师。这是很主观的、很个人的事情。你瞧瞧,工程师可不喜欢听这个——没办法量化?那就不重要!如此一来,消灭设计师的趋势就出现了。我们工程师只靠测试就可以走向成功,简单得很,谁还需要设计师!有震撼力、俘获人心的设计所带来的激动心情,被认为是无关紧要的。更糟糕的是,设计的本质正在被忽视和践踏,设计正在面临危机。
不相信吗?我们来看看 Google。有一位高级设计师离开 Google 的事情 ,曾被公开报道并为人关注。这位高级设计师在自己的博客上说道,Google 对设计不感兴趣,也不想参透设计。似乎 Google 主要是依靠测试结果来进行设计决策,而不是依靠人的技能和判断。Google 能全权掌控试验,快速地把多种样例发布给数以百万计的用户群体,让两种设计相互竞争,决定选取哪种设计的根据,是点击量、销售业绩等等任何他们想要的客观衡量标准。什么样的蓝色最好?测试一下便知。怎么摆放元素最好?测试一下就行。页面如何布局?测试一下即可。
这种依靠测试的做法非 Google 独有。Amazon.com 一直在依此进行实践。多年以前我就被骄傲地告知,他们不再陷入设计好坏的争论——他们只做测试,然后根据数据来决定。当然,这正是以人为中心的迭代式设计思路(human-centered ierative design):制作原型、测试、修订,如此循环迭代。
这就是设计的未来吗?诚然有不少人这么想,已然是演讲和研讨会上的热门话题。毕竟支持者可以理智地问道:谁要来反对用数据说话吗?
两种创新:渐进式改善和新概念
谈到设计,和几乎所有的创新,至少有两种截然不同的实践形式。其一是渐进式改善(incremental improvement)。这意味着,一家企业在产品制造过程中的单位成本随着对产品持续、渐进的改善而逐渐降低。由此形成的稳定的渐进式创新链条,有助于运营、部件的供货以及供应链管理。持续对产品设计进行修补:调整界面、追加新功能、在各处做小修订等等。在既有平台的基础上,采用不同的功能搭配组合,简单做些微修改,就可做到每年都发布新产品。既减少部分功能,以便推出低端产品线,也可以对部分功能进行强化或追加全新的功能。采用渐进式改善,基本的平台底子总是不变的。渐进式设计和创新不如开创新概念、新想法来的有魅力,但比后者常见得多,也重要得多。这样的创新都是小创新,但其中大部分都非常成功。此即所谓的企业“摇钱树(cash cows)”:这样的一条产品线,只需追加很少的开发成本,就能实现常年获利颇丰。
第二种形式的设计,则是教授“突破性产品创新”时所谈的那种设计,广泛见之于设计、工程和 MBA 课程当中。这种设计即发明新概念、定义新产品、开创新商机,是创新中有趣的那一部分,因而也是大部分设计师、发明家希望盘踞的领地。然而这种设计的风险是很大的:大部分创新会失败。成功的创新可能经历数十年才会被广泛接受——所以创新者并不一定就是获益者。
在开头我提到的那个 Apple 产品模型事例中,设计师就是在发明新概念。相较之下,Google 和 Amazon 实践的就是渐进式改善。这是两种不同的实践活动。和大部分创新一样,那个 Apple 产品最终失败了。为什么会失败呢?我过一会儿再来说明。
两种形式的设计都是必要的。围绕“数据驱动(data-driven)”型设计的争论是有误导性的,因为其无非是用一种设计的优势来否定另一种设计的重要性。对于改善既有产品而言,数据驱动型设计确实行之有效。然而,产品本身又是从哪儿来的呢?当然是来自某个有创意的脑袋瓜。测试有助于强化一个既有想法,前提是需要有创意的设计师和发明家来给出这个想法。
为什么测试很重要却又不完善
数据驱动型设计正好比一种知名的优化算法——“爬山(hill-climbing)”法。设想你身在一座不熟悉的山丘上,一片漆黑伸手不见五指。如果你看不见,要如何爬到山顶呢?你可以测试自己周围的地形,哪个方向是最陡且往上的,就向哪个方向迈一步。重复探寻,直到你周围任一方向都往下行为止。
但如果这片地区有很多山丘怎么办呢?如何能知道你是否处于整片山丘的最高处呢?答案是:你不能知道。此即“local maximum(局部最大值)”问题:你无法判定你是在最高的山丘顶上(即全局最大值,global maximum)上,还是在一个小山丘顶上。
在数学空间中,计算机可尝试从空间中多个不同的部分同时施行“爬山”算法,并选取所有尝试结果中的最大值,从而避免“局部最大值”问题。这种做法仍然无法保证能取到真正的最大值,但能避免被局限在单一的局部最大值上。这种策略对设计师而言鲜能凑效。确定一个起点就已经很不容易了,更不用说确定多个不同的起点。如此一来,通过测试来进行改进的设计只可能达到一个局部上限。测试永远不可能告诉我们,是否存在好得多的方案(也许另一个山丘要高得多)。
于是就需要有创意的人来参与。当这个人重新构造问题,认识到之前探索的局限性,突破就会出现。设计和发明需要创意的一面。渐进式的设计无法做到这一点。
伟大创新的障碍
激动人心的创新所具备的一些根本特征,使创新本身不适合通过测试来进行决断。人们对新颖设计有抵触情绪,采取的态度会趋于保守。做事情的新技术、新方法往往要历经数十甚至上百年才会被接受。与此不同的是,各种基于测试的设计方式都假设,做出一个改动之后,能够立刻测试、得到反馈,并立刻决定改动后是否比改动前更好。
我们没有办法判别激进的新想法最终是否能成功。我们还需要伟大的领头者和勇气。历史告诉我们,有许多人面对一次又一次的拒绝和抵触,坚持了很长时间,其想法才终获接受。这些成功者经常指出,在产品获得成功后,人们就无法想象以前没有这个产品的时候是怎么过的了。历史也告诉我们,有许多人坚持过,最终也未获得成功。对激进的新想法持怀疑态度并不为过。
一个初成的想法不被接受,因素很多:可能是因为技术还不成熟,可能是因为还有很多东西有待优化,可能是因为受众群体还没有做好接受它的准备,也可能是因为这是个糟糕的想法。判定其中的主导因素是很困难的——是在确立想法很久之后,才会得到的后见之明。
一个激动人心的想法,从想法形成并初步实现,到最终认定其在市场中的成功或失败,历时长久。 有些人想以证据作为标准,对新发展方向进行定夺,却被这漫长的时间差所击败。 更好的方案即使曾经被提出过 ,也可能会被自动化测试否决掉——这并不是因为它不好,而是因为它等不了数十年的时间来获得认可。只看测试结果的人注定会错过巨大的回报。
当然,有很多合理的商业考虑能够解释,为什么忽略有可能更好的方案是明智的。毕竟,如果受众没有做好接受新想法的准备,这个新想法一开始就是会在市场中失败。短期看来确实如此。但若要想在未来获得成功,最佳的方案是先发展新想法并将其商业化,投入市场以获取经验,并不断地进行优化,发展客户基础。同时,公司还要做好准备,应对现有方案之不测。既要保持把现有的做好,还要准备随时迎接新的。如果公司没能洞察到新趋势,其竞争对手就会迎头赶上,接手市场。这些竞争对手往往是被现有公司忽略的小创业团队。之所以被忽略,是因为这些新来者的所作所为还不太为市场所接受,无论如何都不像是老公司现有业务的有力挑战者。请参见“创新者的困境(The Innovator's Dilemma) ”,以了解这种公司的运营困境。
用于屏幕驱动(screen-driven)型设备和电子游戏的势控(gestural)界面和多点触控界面,正是两个久经蹉跎才成功的创新例子。 它们难道不是杰出的创新吗?当然是。它们难道不杰出吗?当然杰出。但是它们新吗?绝对不新!多点触控设备在研究实验室里等待了近 30 年,才首次迎来大规模量产的成功产品。20 年前我就见过势控界面演示。新想法要花上相当可观的时间,才会在市场上获得成功。过快地把想法商业化,往往以失败(以及大笔的资金损失)而告终。
当年那位给我看模型的 Apple 设计师同事也未能幸免。他给我看的是一台为小学生设计的便携设备,其外形设计不同于我之前所见的任何东西。那真是绝妙的设计——即便是在我这通常很挑剔的眼里,其设计也完美切合了其用途和受众。可惜的是,最终产品成了 Apple 公司部门间内讧的牺牲品。尽管产品最终被投放到了市场中,但部门间的不合导致了糟糕的实施、糟糕的产品支持和糟糕的市场推广,破坏了产品的整体性。
公司抵触完全地创新,也有根有据。在不能确定赢利潜力的情况下开发新产品线,代价是很高的。而且现有产品的责任部门也会担心新产品打压了现有产品的销售(这叫做“同类相食”)。这些担忧一般都是合理的。这种形势也属经典案例,即有益于公司的好事情对现有产品部门来说却是坏事情,因为那意味着现有产品部门职员得到升迁和奖励的机会不容乐观。如此想来,公司会抵触创新也就不足为奇了。统计数据清楚地表明,尽管极少数创新取得了非凡的成功,但绝大部分创新都失败了并付出惨重代价。无论公司的新闻稿和年度报告里怎么说,公司都会犹豫甚至抵触创新,这都不足为奇,因为持保守态度是明智的。
展望未来
数据驱动的自动化流程会慢慢侵占如今人类设计师所掌握的地盘。诸如基因算法、知识密集型系统等等这些依靠计算机生成创意的新方法会开始接管设计的创意空间。医疗诊断或工程设计等其他领域也正在发生相同的变化。
我们将面对更多无需设计师的设计,但主要只限于在对既有概念的强化、精化和优化方面。即使到了以后,神经网络、基因算法,抑或其他某种尚未被发现的方法都能被用来开发新的、有创意的人工系统了,任何新概念也还是须要面对同样的困难,经历漫长的接受周期,??人类在心理上的、社会上的和政治上的复杂需求。要做到这一点,我们需要有创意的设计师、有创意的商业人士和有冒险精神的人来突破极限。会有新想法遭到抵触。许多伟大的创新将以更多巨大的失败为代价。
无需设计师的设计?有些人讨厌人类判断的含糊性和不确定性,讨厌人类不靠谱的过往表现和自相矛盾的论调。这些人会尝试剥离设计中的人为因素,转投数字和数据和怀抱,只因为数字和数据看起来似乎能提供确定性。还有一些人希望借助创意来得到巨大收获,他们会遵循自己的原则来做。前者会带来持续的小改进,显著提高生产力并降低成本。后者会面对巨大的失败,并迎接偶然发生的巨大成功——这些巨大成功会改变世界。
_____________________________________________
唐纳德·诺曼(Donald Arthur Norman,1935 年 12 月 25 日-)为美国认知心理学家、计算机工程师、工业设计家,认知科学学会的发起人之一,关注人类社会学、行为学的研究。现为美国西北大学计算机科学系和心理学教授,是尼而森—诺曼集团(Nielsen Norman Group)咨询公司的创办人之一,苹果计算机公司先进技术部副总裁。1999 年,他被 Upside 杂志提名为世界 100 精英之一。Norman 博士出版了大量的书籍和研究报告。他的作品有 13 本之多,并被翻译成 12 种语言。其中最有名的要数《设计心理学》、《情感化设计》以及 2009 年出版的《未来产品的设计》。
原文链接:Design without designers