AtomicInteger
解析:http://donald-draper.iteye.com/blog/2359555
锁持有者管理器AbstractOwnableSynchronizer:http://donald-draper.iteye.com/blog/2360109
AQS
线程挂起辅助类LockSupport:http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH
队列,线程等待状态:http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解:http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解:http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景:http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解:http://donald-draper.iteye.com/blog/2360597
CyclicBarrier详解:http://donald-draper.iteye.com/blog/2360812
class="java">/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import java.util.concurrent.atomic.*;
/**
* A counting semaphore. Conceptually, a semaphore maintains a set of
* permits. Each {@link #acquire} blocks if necessary until a permit is
* available, and then takes it. Each {@link #release} adds a permit,
* potentially releasing a blocking acquirer.
* However, no actual permit objects are used; the {@code Semaphore} just
* keeps a count of the number available and acts accordingly.
*
一个计算的信号量,维持着一个许可集。如果许可集中,无许可,线程acquire,
将会阻塞,直到其他线程释放许可。线程每一次释放#release,则添加一个许可,潜在地
释放一个阻塞信号获取者。信号量的许可,实际上并不是一对象,仅仅保证一定数量的虚拟许可证。
* <p>Semaphores are often used to restrict the number of threads than can
* access some (physical or logical) resource. For example, here is
* a class that uses a semaphore to control access to a pool of items:
* <pre>
信号量经常被用于,只有一定数量的线程访问一些物理或逻辑资源。比如用信号量控制池对象的获取。
* class Pool {
* private static final int MAX_AVAILABLE = 100;
* private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);
*
* public Object getItem() throws InterruptedException {
* available.acquire();
* return getNextAvailableItem();
* }
*
* public void putItem(Object x) {
* if (markAsUnused(x))
* available.release();
* }
*
* // Not a particularly efficient data structure; just for demo
*
* protected Object[] items = ... whatever kinds of items being managed
* protected boolean[] used = new boolean[MAX_AVAILABLE];
*
* protected synchronized Object getNextAvailableItem() {
* for (int i = 0; i < MAX_AVAILABLE; ++i) {
* if (!used[i]) {
* used[i] = true;
* return items[i];
* }
* }
* return null; // not reached
* }
*
* protected synchronized boolean markAsUnused(Object item) {
* for (int i = 0; i < MAX_AVAILABLE; ++i) {
* if (item == items[i]) {
* if (used[i]) {
* used[i] = false;
* return true;
* } else
* return false;
* }
* }
* return false;
* }
*
* }
* </pre>
*
* <p>Before obtaining an item each thread must acquire a permit from
* the semaphore, guaranteeing that an item is available for use. When
* the thread has finished with the item it is returned back to the
* pool and a permit is returned to the semaphore, allowing another
* thread to acquire that item. Note that no synchronization lock is
* held when {@link #acquire} is called as that would prevent an item
* from being returned to the pool. The semaphore encapsulates the
* synchronization needed to restrict access to the pool, separately
* from any synchronization needed to maintain the consistency of the
* pool itself.
*
在线程从对象池,获取对象前,必须从信号量获取许可,用于保证对象时可利用的。
当线程任务完成时,对象将会被放回池中,释放许可,同时允许其他线程获取对象。
如果线程acquire,但没有持有同步锁,则对象将返回池中。信号量中的同步器需要严格的
控制对象池的访问,与其他维持对象池一致性的同步器相互独立。
* <p>A semaphore initialized to one, and which is used such that it
* only has at most one permit available, can serve as a mutual
* exclusion lock. This is more commonly known as a [i]binary
* semaphore[/i], because it only has two states: one permit
* available, or zero permits available. When used in this way, the
* binary semaphore has the property (unlike many {@link Lock}
* implementations), that the "lock" can be released by a
* thread other than the owner (as semaphores have no notion of
* ownership). This can be useful in some specialized contexts, such
* as deadlock recovery.
*
当信号量被初始化为1时,作为互斥锁,可以用于最多只有一个 permit可以用的场景。
这种方式比较有名的一种是二进制信号量,因为它只有两种状态,1表示可利用,0表示
无permits可利用。二进制信号量,有一个属性,锁可以被其他非持有锁的线程释放。
这种特性在一些特殊的上下文场景中,比较拥有,比如恢复死锁。
* <p> The constructor for this class optionally accepts a
* [i]fairness[/i] parameter. When set false, this class makes no
* guarantees about the order in which threads acquire permits. In
* particular, [i]barging[/i] is permitted, that is, a thread
* invoking {@link #acquire} can be allocated a permit ahead of a
* thread that has been waiting - logically the new thread places itself at
* the head of the queue of waiting threads. When fairness is set true, the
* semaphore guarantees that threads invoking any of the {@link
* #acquire() acquire} methods are selected to obtain permits in the order in
* which their invocation of those methods was processed
* (first-in-first-out; FIFO). Note that FIFO ordering necessarily
* applies to specific internal points of execution within these
* methods. So, it is possible for one thread to invoke
* {@code acquire} before another, but reach the ordering point after
* the other, and similarly upon return from the method.
* Also note that the untimed {@link #tryAcquire() tryAcquire} methods do not
* honor the fairness setting, but will take any permits that are
* available.
*
信号量的构造函数,中带一个公平性参数。当设置为false时,信号量不能够保证,线程
能够按顺序获取许可。在特殊情况下,barging是允许的,由于一个新线程将自己放在队列的
头部,当调用acquire时,可能会在已经等待线程,前面获取许可。当为公平true时,
信号量保证,线程按照,他们获取信号的顺序,给予许可。FIFO队列中,并不能保证却对的
顺序,一个线程可能调用获取信号量,在另一线程前面,但另一个线程先到达顺序点。
tryAcquire方法,不能保证绝对的公平性, 当许可可利用,则许可将被分配。
* <p>Generally, semaphores used to control resource access should be
* initialized as fair, to ensure that no thread is starved out from
* accessing a resource. When using semaphores for other kinds of
* synchronization control, the throughput advantages of non-fair
* ordering often outweigh fairness considerations.
*
信号量,用于控制资源的访问时,应该初始化为公平锁,以保证不会有线程,几乎
访问不到资源。当信号量用于其他场景时,非公平锁,可以提高吞吐量。
* <p>This class also provides convenience methods to {@link
* #acquire(int) acquire} and {@link #release(int) release} multiple
* permits at a time. Beware of the increased risk of indefinite
* postponement when these methods are used without fairness set true.
信号量允许一次获取或释放多个信号量。当这些方法以非公平锁的方式使用,将会
增加不确定性的风险
*
* <p>Memory consistency effects: Actions in a thread prior to calling
* a "release" method such as {@code release()}
* [url=package-summary.html#MemoryVisibility]<i>happen-before</i>[/url]
* actions following a successful "acquire" method such as {@code acquire()}
* in another thread.
*
内存一致性:一个线程释放锁动作,发生在另一个线程成功获取锁的前面。
* @since 1.5
* @author Doug Lea
*
*/
public class Semaphore implements java.io.Serializable {
private static final long serialVersionUID = -3222578661600680210L;
/** All mechanics via AbstractQueuedSynchronizer subclass */
//内部同步锁,基于AQS实现
private final Sync sync;
/**
* Synchronization implementation for semaphore. Uses AQS state
* to represent permits. Subclassed into fair and nonfair
* versions.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 1192457210091910933L;
//以锁的状态来,来存储许可
Sync(int permits) {
setState(permits);
}
final int getPermits() {
return getState();
}
//非公平方式获取锁
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
//如果,无许可可用,则返回,有,则CAS更新锁状态
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
//释放共享锁
protected final boolean tryReleaseShared(int releases) {
for (;;) {
//释放的信号量,不能大于当前可用许可
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
//CAS更新锁状态
if (compareAndSetState(current, next))
return true;
}
}
//减少当前可用的许可
final void reducePermits(int reductions) {
for (;;) {
int current = getState();
int next = current - reductions;
if (next > current) // underflow
throw new Error("Permit count underflow");
if (compareAndSetState(current, next))
return;
}
}
/**
* Acquires and returns all permits that are immediately available.
*获取返回当前以及可用的许可
* @return the number of permits acquired
*/
final int drainPermits() {
for (;;) {
int current = getState();
if (current == 0 || compareAndSetState(current, 0))
return current;
}
}
}
/**
* NonFair version,非公平锁
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L;
NonfairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
}
/**
* Fair version,公平锁
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L;
FairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
for (;;) {
//先看有没有前驱,有则返回,获取信号失败,没有前驱,则尝试获取信号锁
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}
//默认为非公平锁,许可必须为正值
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
//带公平性参数的信号量,构造
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
}
尝试获取锁,可中断
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
//AQS
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
//如果中断,则抛出中断异常
throw new InterruptedException();
//如果获取失败,则自旋
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
//待子类扩展
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
tryAcquireShared放在AQS中为空体,实际为信号量中的内部SYNC中的方法,上面
我们已经看过。这个方法我们在前面有说过,这里简单说一下,当尝试获取锁,失败,添加到等待队列自旋等待,尝试获取锁。
//AQS
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
以不可中断方式,获取共享锁
public void acquireUninterruptibly() {
sync.acquireShared(1);
}
//AQS
/**
* Acquires in shared uninterruptible mode.
* @param arg the acquire argument
*/
已共享非中断模式,获取锁
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
//关键在这,如果中断,则自中断,消除中断位
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* Convenience method to interrupt current thread.
*/
private static void selfInterrupt() {
Thread.currentThread().interrupt();
}
//Semaphore
尝试获取锁时,是以非公平的方式,抢占锁
public boolean tryAcquire() {
return sync.nonfairTryAcquireShared(1) >= 0;
}
尝试获取共享锁,当
超时,还没有获取锁,则取消锁的获取
public boolean tryAcquire(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
以可中断方式,获取permits个许可
public void acquire(int permits) throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireSharedInterruptibly(permits);
}
以非可中断方式,获取permits个许可
public void acquireUninterruptibly(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireShared(permits);
}
以非公平方式,尝试获取permits个许可
public boolean tryAcquire(int permits) {
if (permits < 0) throw new IllegalArgumentException();
return sync.nonfairTryAcquireShared(permits) >= 0;
}
尝试获取permits个许可,当超时,还没有获取锁,则取消锁的获取
public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout));
}
//释放锁
public void release() {
sync.releaseShared(1);
}
//AQS
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
//唤醒后继节点线程
* Release action for shared mode -- signal successor and ensure
* propagation. (Note: For exclusive mode, release just amounts
* to calling unparkSuccessor of head if it needs signal.)
*/
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
//Semaphore
//释放permits个许可
public void release(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.releaseShared(permits);
}
/**
* Returns the current number of permits available in this semaphore.
*
* <p>This method is typically used for debugging and testing purposes.
*
* @return the number of permits available in this semaphore
*/
//当前可用许可
public int availablePermits() {
return sync.getPermits();
}
/**
* Acquires and returns all permits that are immediately available.
*获取返回当前以及可用的许可
* @return the number of permits acquired
*/
public int drainPermits() {
return sync.drainPermits();
}
/**
* Shrinks the number of available permits by the indicated
* reduction. This method can be useful in subclasses that use
* semaphores to track resources that become unavailable. This
* method differs from {@code acquire} in that it does not block
* waiting for permits to become available.
* 减少当前可用的许可,这个方法在子类想要用信号量,追踪资源是否可用是
非常有用,此方法不会阻塞。
* @param reduction the number of permits to remove
* @throws IllegalArgumentException if {@code reduction} is negative
*/
protected void reducePermits(int reduction) {
if (reduction < 0) throw new IllegalArgumentException();
sync.reducePermits(reduction);
}
/**
* Returns {@code true} if this semaphore has fairness set true.
*
* @return {@code true} if this semaphore has fairness set true
*/
public boolean isFair() {
return sync instanceof FairSync;
}
/**
* Queries whether any threads are waiting to acquire. Note that
* because cancellations may occur at any time, a {@code true}
* return does not guarantee that any other thread will ever
* acquire. This method is designed primarily for use in
* monitoring of the system state.
*
* @return {@code true} if there may be other threads waiting to
* acquire the lock
*/
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
/**
* Returns an estimate of the number of threads waiting to acquire.
* The value is only an estimate because the number of threads may
* change dynamically while this method traverses internal data
* structures. This method is designed for use in monitoring of the
* system state, not for synchronization control.
*
* @return the estimated number of threads waiting for this lock
*/
public final int getQueueLength() {
return sync.getQueueLength();
}
/**
* Returns a collection containing threads that may be waiting to acquire.
* Because the actual set of threads may change dynamically while
* constructing this result, the returned collection is only a best-effort
* estimate. The elements of the returned collection are in no particular
* order. This method is designed to facilitate construction of
* subclasses that provide more extensive monitoring facilities.
*
* @return the collection of threads
*/
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
总结:
信号量,维持着一个许可集。如果许可集中,无许可,线程acquire,
将会阻塞,直到其他线程释放许可。线程每一次释放#release,则添加一个许可,潜在地
释放一个阻塞信号获取者。信号量的许可,实际上并不是一对象,仅仅保证一定数量的虚拟许可证。信号量经常被用于,只有一定数量的线程访问一些物理或逻辑资源。比如用信号量控制池对象的获取。当信号量被初始化为1时,作为互斥锁,可以用于最多只有一个 permit可以用的场景。这种方式比较有名的一种是二进制信号量,因为它只有两种状态,1表示可利用,0表示无permits可利用。二进制信号量,有一个属性,锁可以被其他非持有锁的线程释放。
这种特性在一些特殊的上下文场景中,比较拥有,比如恢复死锁。信号量中的锁有公平和非公平方式,这个和我们前面讲的可重入锁,有点相似。非公平方式,获取锁,首先检查锁是否可用,可用则获取,公平锁获取锁,先检查有没有前驱节点,有则等待,没有则获取。获取锁的方法,有多种,有公平的和非公平,则个要看需求。