描述
假定有一组文件,以空格为分隔符存放着数据。如
Hello World
Hello my love
Hello World , i love you
计算一组文件中字符所出现的次数。
实现思路
Map函数:
以字符作为key值,value为1,生成键值对。
Reduce函数:
获取Map输出的键值对,将各个键中的值相加,输出。
逻辑图:
?
代码实现:
class="java" name="code">import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, "word count11"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // FileInputFormat.addInputPath(job, new Path(otherArgs[0])); // FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); FileInputFormat.addInputPath(job, new Path("input")); FileOutputFormat.setOutputPath(job, new Path("output")); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
?
总结:
这个例子是Hadoop官网给出的例子,比较简单,是MapReduce的HelloWorld小程序。
?