堆排序_JAVA_编程开发_程序员俱乐部

中国优秀的程序员网站程序员频道CXYCLUB技术地图
热搜:
更多>>
 
您所在的位置: 程序员俱乐部 > 编程开发 > JAVA > 堆排序

堆排序

 2013/9/26 12:50:47  天上掉下个喜欢编程的榕哥哥  程序员俱乐部  我要评论(0)
  • 摘要:最近几次笔试总碰到堆排序,恰好这种排序是自己没学过的,所以看了一下堆排序,才知道堆排序其实是一种比较快的排序算法,自己整理了一下写出来,加深自己的印象。堆排序堆的定义:把待排序序列看成一棵完全二叉树,当满足以下条件的一个时,称为堆:ki≤k2i且ki≤k2i+1(小顶堆)或者ki≥k2i且ki≥k2i+1(大顶堆)其中i=1,2,3...n/2在一棵完全二叉树中,每个父节点跟其左右孩子之间的序号关系是i和2i、2i+1的关系,所以在满足了堆条件后,堆的最顶部的节点对应的值就是最小值或最大值
  • 标签:堆排序

? ? ? ?最近几次笔试总碰到堆排序,恰好这种排序是自己没学过的,所以看了一下堆排序,才知道堆排序其实是一种比较快的排序算法,自己整理了一下写出来,加深自己的印象。

?

堆排序 ? ??

?

? ? ? 堆的定义:把待排序序列看成一棵完全hashu.html" target="_blank">二叉树,当满足以下条件的一个时,称为堆:

?

? ? ?? ? ? ? ? ? ? ? ? ?kik2iki? k2i+1 (小顶堆) ? 或者 ? ??

? ? ? ? ? ? ? ? ? ? ? ?ki??k2i??ki??k2i+1 (大顶堆) ? ?其中i=1,2,3...n/2

? ? ? ? ? ?在一棵完全二叉树中,每个父节点跟其左右孩子之间的序号关系是i和2i、2i+1的关系,所以

? ? ? 在满了堆条件后,堆的最顶部的节点对应的值就是最小值或最大值。

?

? ? ? 堆排序过程:首先将初始序列建成堆,则堆顶元素就是最大或最小的值,然后继续对剩下的n-1个序列建堆,得到次大或次小元素,以此类推下去,知道执行n-1次后便完成堆排序。

?

? ? ? 完成堆排序要解决两个问题:

? ? ? 1、如何将n个元素的序列建成堆(初始堆)

? ? ? 2、如何将剩下的n-1个元素调整为一个新堆(因为初始堆的堆顶元素被互换之后,堆被打乱了,需要调整。

?

? ? ? 初始堆:对n个结点的完全二叉树,可以认为:以叶子为根的子树(只有它自己)已满足堆特性 因此从最后一个分支结点开始,把每棵子树调整为堆,直到根结点为止,整棵树成为堆。最后一个分支节点是第n/2个。

?

? ? ? 调整堆:

?

? ? ? ? ?假设有一个大根堆,当输出堆顶元素(根结点)后,以堆中最后一个元素替代它。此时根结点的

? ? ? 左和右子树均为堆,则只需自上而下进行调整即可。

? ? ? ? ?首先将堆顶元素与其左、右子树根结点的值进行比较,如果堆顶元素比它的两个子结点都大,则

? ? ? 已经是堆;否则,让堆顶元素与其中较大的孩子结点交换,先让堆顶满足堆的性质。可能因为交换,

? ? ? 使交换后的结点为根的子树不再满足堆的性质,则重复向下调整,当调整使新的更小子树依旧满足堆

? ? ? 的性质时,重新建堆的过程结束。

?

? Java实现代码:

? ? ??

class="java">public class HeapSort {
  public static void main(String[] args) {
        int num[] = new int[] { 0, 5, 40, 32, 2, 2221 };
        heapsort(num, 5);
        for (int x = 0; x < num.length - 1; x++) {
              System.out.print(num[x + 1] + " ");
       }
 }

//调整堆
 public static void adjustHeap(int[] num, int s, int t) {

       int i = s;
       int x = num[s];
       for (int j = 2 * i; j <= t; j = 2 * j) {
           if (j < t && num[j] < num[j + 1])
           j = j + 1;// 找出较大者把较大者给num[i]
           if (x > num[j])
               break;
           num[i] = num[j];
           i = j;

      }
    
       num[i] = x;

 }

 
//主函数
 public static void heapsort(int[] num, int n) {
  // 初始建堆从n/2开始向根调整

      int i;
      for (i = n / 2; i >= 1; i--) {

           adjustHeap(num, i, n);//初始堆过程
      }

      for (i = n; i > 1; i--) {
           num[0] = num[i];// 将堆顶元素与第n,n-1,.....2个元素相交换
           num[i] = num[1];
           num[1] = num[0];// 从num[1]到num[i-1]调整成新堆
           adjustHeap(num, 1, i - 1);

     }

 }

}

?

?

?

? ?它的时间复杂度:

? ?堆是一个完全二叉树,设树高为k=log2n+1,从根到叶的调整,关键码比较的次数为2(k-1),交换的次数至多为

? ?k次。所以比较的次数不超过:

? ? ? ? ? ? ? ? ? ? ? ? ? ? 2*(log2(n-1)+log2(n-2)+....+log22)<2nlog2n

? ?而比较的次数不超过4n.所以堆排序的时间复杂度为O(nlogn).

?

发表评论
用户名: 匿名