求二进制数中1的个数_JAVA_编程开发_程序员俱乐部

中国优秀的程序员网站程序员频道CXYCLUB技术地图
热搜:
更多>>
 
您所在的位置: 程序员俱乐部 > 编程开发 > JAVA > 求二进制数中1的个数

求二进制数中1的个数

 2012/8/21 11:13:38  周凡杨  程序员俱乐部  我要评论(0)
  • 摘要:解法一:对于一个正整数如果是偶数,该数的二进制数的最后一位是0,反之若是奇数,则该数的二进制数的最后一位是1。因此,可以考虑利用位移、判断奇偶来实现。publicintbitCount(intx){intcount=0;while(x!=0){if(x%2!=0){//说明是偶数count++;}x=x>>>1;}returncount;}==============================================================解法二
  • 标签:二进制

解法一:

对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。

?

?

   public int bitCount(int x){

       int count = 0;

       while(x!=0){

        if(x%2!=0){  //说明是偶数

           count++;

        }

         x = x>>>1;

       }

       return count;

    }
?

==============================================================

?

?

解法二:

知道了位移操作同样可以判断奇偶,且效率高于除法操作(“ % ”求余操作最后还是化为除法操作)那就可以用位移来代替上的求余运算。

????? 因为 x & 1 的结果为 1 0 ,为 1 的时候 count+=1 ,为 0 的时候 count+=0

则:

???? If(x&1==1){

???????? count++;

???? }

可简化为: count+ = x&1;

?

  public int bitCount2(int x){

          int count = 0;

          while(x!=0){

              count+ = x&1;

              x = x>>>1;

          }

          return count;

    }
?

?

解法三:

?? 正整数的二进制数最高位为 0 ,负整数和二进制数最高们为 1 ,则可利用左移、判断正负来实现 1 的个数的计算。

?

?

    public int bitCount3(int x){

          int count = 0;

          while(x!=0){

             if(x<0){

                count++;

             }

             x = x<<1;

          }

          return count;

    }

?

?

? ?

解法四:

前面的三种解法,运算的次数为二进制数的位数,时间复杂度仍为 O(log2 v) ,然而我们要计算 1 的个数,若让算法的运算次数只与“ 1 ”的个数有关,那复杂度就能进一步降低。

?

思想: x & (x-1) 可以消去 x 二进制数的最后一位 1

?

?

 public int bitCount4( int x )
 {

        int count = 0;

        while ( x != 0 )

        {

          x &= x - 1;

          count++;

        }

        return count;

}

?

?

解法五:

?? JAVA JDK 库里 Integer 有个 bitCount 方法,其代码是这样实现的

?

? ?

 private int pop(int x)
  {

        x = x - ((x >> 1) & 0x55555555);

        x = (x & 0x33333333) + ((x >> 2) & 0x33333333);

        x = (x + (x >> 4)) & 0x0F0F0F0F;

        x = x + (x >> 8);

        x = x + (x >> 16);

        return x & 0x0000003F;

    }
?

==============================================================

?

二分法,两两一组相加,之后四个四个一组相加,接着八个八个,最后就得到各位之和了。

第一行是计算每两位中的 1 的个数 , 并且用该对应的两位来存储这个个数 ,
: 01101100 -> 01011000 , 即先把前者每两位分段 01 10 11 00 , 分别有 1 1 2 0 1, 用两位二进制数表示为 01 01 10 00, 合起来为 01011000.

第二行是计算每四位中的 1 的个数 , 并且用该对应的四位来存储这个个数 .
: 01101100 经过第一行计算后得 01011000 , 然后把 01011000 每四位分段成 0101 1000 , 段内移位相加 : 前段 01+01 =10 , 后段 10+00=10, 分别用四位二进制数表示为 0010 0010, 合起来为 00100010 .
下面的各行以此类推 , 分别计算每 8 ,16 ,32 位中的 1 的个数 .
0x55555555, 0x33333333, 0x0f0f0f0f 写成二进制数的形式就容易明白了 .

?

?

解法六:

?? HAKMEM 算法

?

  private int pop2(int x) {

         int n;   

         n = (x >> 1) & 033333333333;   

         x = x - n;  

         n = (n >> 1) & 033333333333;  

         x = x - n;   

         x = (x + (x >> 3)) & 030707070707;  

         x = x%63; 

         return x;  

       }

?

首先是将二进制各位三个一组,求出每组中 1 的个数,然后相邻两组归并,得到六个一组的 1 的个数,最后很巧妙的用除 63 取余得到了结果。

因为 2^6?=?64 ,也就是说 ?x_0?+?x_1?*?64?+?x_2?*?64?*?64?=?x_0?+?x_1?+?x_2?(mod?63) ,这里的等号表示同余

?

?

?

参考资料:

1. http://blog.csdn.net/justpub/article/details/2292823

2. http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item169

3. http://tekpool.wordpress.com/category/bit-count/

4. gurmeet.net/puzzles/fast-bit-counting-routines/

5. http://www.tekpool.com/node/2675

6. http://hi.baidu.com/rangemq/blog/item/9f918c8f83997eecf11f367b.html

7. http://stackoverflow.com/questions/109023/best-algorithm-to-count-the-number-of-set-bits-in-a-32-bit-integer

8. http://mindprod.com/jgloss/bitcount.html

?

  • 相关文章
发表评论
用户名: 匿名