课程作业要求实现一个BPNN。此前只用Matlab实现过,这次尝试使用Java实现了一个。现共享之。版权属于大家。关于BPNN的原理,就不赘述了。
下面是BPNN的实现代码。类名为BP。
?
package ml; import java.util.Random; /** * BPNN. * * @author RenaQiu * */ public class BP { /** * input vector. */ private final double[] input; /** * hidden layer. */ private final double[] hidden; /** * output layer. */ private final double[] output; /** * target. */ private final double[] target; /** * delta vector of the hidden layer . */ private final double[] hidDelta; /** * output layer of the output layer. */ private final double[] optDelta; /** * learning rate. */ private final double eta; /** * momentum. */ private final double momentum; /** * weight matrix from input layer to hidden layer. */ private final double[][] iptHidWeights; /** * weight matrix from hidden layer to output layer. */ private final double[][] hidOptWeights; /** * previous weight update. */ private final double[][] iptHidPrevUptWeights; /** * previous weight update. */ private final double[][] hidOptPrevUptWeights; public double optErrSum = 0d; public double hidErrSum = 0d; private final Random random; /** * Constructor. * <p> * <strong>Note:</strong> The capacity of each layer will be the parameter * plus 1. The additional unit is used for smoothness. * </p> * * @param inputSize * @param hiddenSize * @param outputSize * @param eta * @param momentum * @param epoch */ public BP(int inputSize, int hiddenSize, int outputSize, double eta, double momentum) { input = new double[inputSize + 1]; hidden = new double[hiddenSize + 1]; output = new double[outputSize + 1]; target = new double[outputSize + 1]; hidDelta = new double[hiddenSize + 1]; optDelta = new double[outputSize + 1]; iptHidWeights = new double[inputSize + 1][hiddenSize + 1]; hidOptWeights = new double[hiddenSize + 1][outputSize + 1]; random = new Random(19881211); randomizeWeights(iptHidWeights); randomizeWeights(hidOptWeights); iptHidPrevUptWeights = new double[inputSize + 1][hiddenSize + 1]; hidOptPrevUptWeights = new double[hiddenSize + 1][outputSize + 1]; this.eta = eta; this.momentum = momentum; } private void randomizeWeights(double[][] matrix) { for (int i = 0, len = matrix.length; i != len; i++) for (int j = 0, len2 = matrix[i].length; j != len2; j++) { double real = random.nextDouble(); matrix[i][j] = random.nextDouble() > 0.5 ? real : -real; } } /** * Constructor with default eta = 0.25 and momentum = 0.3. * * @param inputSize * @param hiddenSize * @param outputSize * @param epoch */ public BP(int inputSize, int hiddenSize, int outputSize) { this(inputSize, hiddenSize, outputSize, 0.25, 0.9); } /** * Entry method. The train data should be a one-dim vector. * * @param trainData * @param target */ public void train(double[] trainData, double[] target) { loadInput(trainData); loadTarget(target); forward(); calculateDelta(); adjustWeight(); } /** * Test the BPNN. * * @param inData * @return */ public double[] test(double[] inData) { if (inData.length != input.length - 1) { throw new IllegalArgumentException("Size Do Not Match."); } System.arraycopy(inData, 0, input, 1, inData.length); forward(); return getNetworkOutput(); } /** * Return the output layer. * * @return */ private double[] getNetworkOutput() { int len = output.length; double[] temp = new double[len - 1]; for (int i = 1; i != len; i++) temp[i - 1] = output[i]; return temp; } /** * Load the target data. * * @param arg */ private void loadTarget(double[] arg) { if (arg.length != target.length - 1) { throw new IllegalArgumentException("Size Do Not Match."); } System.arraycopy(arg, 0, target, 1, arg.length); } /** * Load the training data. * * @param inData */ private void loadInput(double[] inData) { if (inData.length != input.length - 1) { throw new IllegalArgumentException("Size Do Not Match."); } System.arraycopy(inData, 0, input, 1, inData.length); } /** * Forward. * * @param layer0 * @param layer1 * @param weight */ private void forward(double[] layer0, double[] layer1, double[][] weight) { // threshold unit. layer0[0] = 1.0; for (int j = 1, len = layer1.length; j != len; ++j) { double sum = 0; for (int i = 0, len2 = layer0.length; i != len2; ++i) sum += weight[i][j] * layer0[i]; layer1[j] = sigmoid(sum); } } /** * Forward. */ private void forward() { forward(input, hidden, iptHidWeights); forward(hidden, output, hidOptWeights); } /** * Calculate output error. */ private void outputErr() { double errSum = 0; for (int idx = 1, len = optDelta.length; idx != len; ++idx) { double o = output[idx]; optDelta[idx] = o * (1d - o) * (target[idx] - o); errSum += Math.abs(optDelta[idx]); } optErrSum = errSum; } /** * Calculate hidden errors. */ private void hiddenErr() { double errSum = 0; for (int j = 1, len = hidDelta.length; j != len; ++j) { double o = hidden[j]; double sum = 0; for (int k = 1, len2 = optDelta.length; k != len2; ++k) sum += hidOptWeights[j][k] * optDelta[k]; hidDelta[j] = o * (1d - o) * sum; errSum += Math.abs(hidDelta[j]); } hidErrSum = errSum; } /** * Calculate errors of all layers. */ private void calculateDelta() { outputErr(); hiddenErr(); } /** * Adjust the weight matrix. * * @param delta * @param layer * @param weight * @param prevWeight */ private void adjustWeight(double[] delta, double[] layer, double[][] weight, double[][] prevWeight) { layer[0] = 1; for (int i = 1, len = delta.length; i != len; ++i) { for (int j = 0, len2 = layer.length; j != len2; ++j) { double newVal = momentum * prevWeight[j][i] + eta * delta[i] * layer[j]; weight[j][i] += newVal; prevWeight[j][i] = newVal; } } } /** * Adjust all weight matrices. */ private void adjustWeight() { adjustWeight(optDelta, hidden, hidOptWeights, hidOptPrevUptWeights); adjustWeight(hidDelta, input, iptHidWeights, iptHidPrevUptWeights); } /** * Sigmoid. * * @param val * @return */ private double sigmoid(double val) { return 1d / (1d + Math.exp(-val)); } }
?为了验证正确性,我写了一个测试用例,目的是对于任意的整数(int型),BPNN在经过训练之后,能够准确地判断出它是奇数还是偶数,正数还是负数。首先对于训练的样本(是随机生成的数字),将它转化为一个32位的向量,向量的每个分量就是其二进制形式对应的位上的0或1。将目标输出视作一个4维的向量,[1,0,0,0]代表正奇数,[0,1,0,0]代表正偶数,[0,0,1,0]代表负奇数,[0,0,0,1]代表负偶数。
训练样本为1000个,学习200次。
?
package ml; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.Random; public class Test { /** * @param args * @throws IOException */ public static void main(String[] args) throws IOException { BP bp = new BP(32, 15, 4); Random random = new Random(); List<Integer> list = new ArrayList<Integer>(); for (int i = 0; i != 1000; i++) { int value = random.nextInt(); list.add(value); } for (int i = 0; i != 200; i++) { for (int value : list) { double[] real = new double[4]; if (value >= 0) if ((value & 1) == 1) real[0] = 1; else real[1] = 1; else if ((value & 1) == 1) real[2] = 1; else real[3] = 1; double[] binary = new double[32]; int index = 31; do { binary[index--] = (value & 1); value >>>= 1; } while (value != 0); bp.train(binary, real); } } System.out.println("训练完毕,下面请输入一个任意数字,神经网络将自动判断它是正数还是复数,奇数还是偶数。"); while (true) { byte[] input = new byte[10]; System.in.read(input); Integer value = Integer.parseInt(new String(input).trim()); int rawVal = value; double[] binary = new double[32]; int index = 31; do { binary[index--] = (value & 1); value >>>= 1; } while (value != 0); double[] result = bp.test(binary); double max = -Integer.MIN_VALUE; int idx = -1; for (int i = 0; i != result.length; i++) { if (result[i] > max) { max = result[i]; idx = i; } } switch (idx) { case 0: System.out.format("%d是一个正奇数\n", rawVal); break; case 1: System.out.format("%d是一个正偶数\n", rawVal); break; case 2: System.out.format("%d是一个负奇数\n", rawVal); break; case 3: System.out.format("%d是一个负偶数\n", rawVal); break; } } } }
?运行结果截图如下:
?这个测试的例子非常简单。大家可以根据自己的需要去使用BP这个类。