几种简单的排序的 Java 实现
代码
注释非常详细~
import java.util.Random;
/**
* 排序测试类
*
* 排序算法的分类如下:
* 1.插入排序(直接插入排序、折半插入排序、希尔排序);
* 2.交换排序(冒泡泡排序、快速排序);
* 3.选择排序(直接选择排序、堆排序);
* 4.归并排序;
* 5.基数排序。
*
* 关于排序方法的选择:
* (1)若n较小(如n≤50),可采用直接插入或直接选择排序。
* 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
* (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
* (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
*
*/
public class SortTest {
/**
* 初始化测试数组的方法
* @return 一个初始化好的数组
*/
public int[] createArray() {
Random random = new Random();
int[] array = new int[10];
for (int i = 0; i < 10; i++) {
array[i] = random.nextInt(100) - random.nextInt(100);//生成两个随机数相减,保证生成的数中有负数
}
System.out.println("==========原始序列==========");
printArray(array);
return array;
}
/**
* 打印数组中的元素到控制台
* @param source
*/
public void printArray(int[] data) {
for (int i : data) {
System.out.print(i + " ");
}
System.out.println();
}
/**
* 交换数组中指定的两元素的位置
* @param data
* @param x
* @param y
*/
private void swap(int[] data, int x, int y) {
int temp = data[x];
data[x] = data[y];
data[y] = temp;
}
/**
* 冒泡排序----交换排序的一种
* 方法:相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在最后(如从小到大排序),下一次循环是将其他的数进行类似操作。
* 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4
*
* @param data 要排序的数组
* @param sortType 排序类型
* @return
*/
public void bubbleSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
//比较的轮数
for (int i = 1; i < data.length; i++) {
//将相邻两个数进行比较,较大的数往后冒泡
for (int j = 0; j < data.length - i; j++) {
if (data[j] > data[j + 1]) {
//交换相邻两个数
swap(data, j, j + 1);
}
}
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
//比较的轮数
for (int i = 1; i < data.length; i++) {
//将相邻两个数进行比较,较大的数往后冒泡
for (int j = 0; j < data.length - i; j++) {
if (data[j] < data[j + 1]) {
//交换相邻两个数
swap(data, j, j + 1);
}
}
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出冒泡排序后的数组值
}
/**
* 直接选择排序法----选择排序的一种
* 方法:每一趟从待排序的数据元素中选出最小(或最大)的一个元素, 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
* 性能:比较次数O(n^2),n^2/2
* 交换次数O(n),n
* 交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。
* 但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。
*
* @param data 要排序的数组
* @param sortType 排序类型
* @return
*/
public void selectSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
int index;
for (int i = 1; i < data.length; i++) {
index = 0;
for (int j = 1; j <= data.length - i; j++) {
if (data[j] > data[index]) {
index = j;
}
}
//交换在位置data.length-i和index(最大值)两个数
swap(data, data.length - i, index);
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
int index;
for (int i = 1; i < data.length; i++) {
index = 0;
for (int j = 1; j <= data.length - i; j++) {
if (data[j] < data[index]) {
index = j;
}
}
//交换在位置data.length-i和index(最大值)两个数
swap(data, data.length - i, index);
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出直接选择排序后的数组值
}
/**
* 插入排序
* 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。
* 性能:比较次数O(n^2),n^2/4
* 复制次数O(n),n^2/4
* 比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。
*
* @param data 要排序的数组
* @param sortType 排序类型
*/
public void insertSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
//比较的轮数
for (int i = 1; i < data.length; i++) {
//保证前i+1个数排好序
for (int j = 0; j < i; j++) {
if (data[j] > data[i]) {
//交换在位置j和i两个数
swap(data, i, j);
}
}
}
} else if (sortType.equals("desc")) { //倒排序,从大排到小
//比较的轮数
for (int i = 1; i < data.length; i++) {
//保证前i+1个数排好序
for (int j = 0; j < i; j++) {
if (data[j] < data[i]) {
//交换在位置j和i两个数
swap(data, i, j);
}
}
}
} else {
System.out.println("您输入的排序类型错误!");
}
printArray(data);//输出插入排序后的数组值
}
/**
* 反转数组的方法
* @param data 源数组
*/
public void reverse(int[] data) {
int length = data.length;
int temp = 0;//临时变量
for (int i = 0; i < length / 2; i++) {
temp = data[i];
data[i] = data[length - 1 - i];
data[length - 1 - i] = temp;
}
printArray(data);//输出到转后数组的值
}
/**
* 快速排序
* 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。
* 步骤为:
* 1. 从数列中挑出一个元素,称为 "基准"(pivot),
* 2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。
* 3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
* 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
* @param data 待排序的数组
* @param low
* @param high
* @see SortTest#qsort(int[], int, int)
* @see SortTest#qsort_desc(int[], int, int)
*/
public void quickSort(int[] data, String sortType) {
if (sortType.equals("asc")) { //正排序,从小排到大
qsort_asc(data, 0, data.length - 1);
} else if (sortType.equals("desc")) { //倒排序,从大排到小
qsort_desc(data, 0, data.length - 1);
} else {
System.out.println("您输入的排序类型错误!");
}
}
/**
* 快速排序的具体实现,排正序
* @param data
* @param low
* @param high
*/
private void qsort_asc(int data[], int low, int high) {
int i, j, x;
if (low < high) { //这个条件用来结束递归
i = low;
j = high;
x = data[i];//用x变量先保存这个值,以便比较和最后的存放
//这里实际上是选择了第一个数作为基准点
while (i < j) {
while (i < j && data[j] > x) {
j--; //从右向左找第一个小于x的数
}
if (i < j) {//找到了小于x的数
data[i] = data[j];
i++;
}
while (i < j && data[i] < x) {
i++; //从左向右找第一个大于x的数
}
if (i < j) {
data[j] = data[i];
j--;
}
}
data[i] = x;//此时i和j相遇(相等)了
qsort_asc(data, low, i - 1);
qsort_asc(data, i + 1, high);
}
}
/**
* 快速排序的具体实现,排倒序
* @param data
* @param low
* @param high
*/
private void qsort_desc(int data[], int low, int high) {
int i, j, x;
if (low < high) { //这个条件用来结束递归
i = low;
j = high;
x = data[i];
while (i < j) {
while (i < j && data[j] < x) {
j--; //从右向左找第一个小于x的数
}
if (i < j) {
data[i] = data[j];
i++;
}
while (i < j && data[i] > x) {
i++; //从左向右找第一个大于x的数
}
if (i < j) {
data[j] = data[i];
j--;
}
}
data[i] = x;
qsort_desc(data, low, i - 1);
qsort_desc(data, i + 1, high);
}
}
/**
*二分查找特定整数在整型数组中的位置(递归)
*查找线性表必须是有序列表
*@paramdataset
*@paramdata
*@parambeginIndex
*@paramendIndex
*@returnindex
*/
public int binarySearch(int[] dataset, int data, int beginIndex,
int endIndex) {
int midIndex = (beginIndex + endIndex) >>> 1; //相当于mid = (low + high) / 2,但是效率会高些
if (data < dataset[beginIndex] || data > dataset[endIndex]
|| beginIndex > endIndex)
return -1;
if (data < dataset[midIndex]) {
return binarySearch(dataset, data, beginIndex, midIndex - 1);
} else if (data > dataset[midIndex]) {
return binarySearch(dataset, data, midIndex + 1, endIndex);
} else {
return midIndex;
}
}
/**
*二分查找特定整数在整型数组中的位置(非递归)
*查找线性表必须是有序列表
*@paramdataset
*@paramdata
*@returnindex
*/
public int binarySearch(int[] dataset, int data) {
int beginIndex = 0;
int endIndex = dataset.length - 1;
int midIndex = -1;
if (data < dataset[beginIndex] || data > dataset[endIndex]
|| beginIndex > endIndex)
return -1;
while (beginIndex <= endIndex) {
midIndex = (beginIndex + endIndex) >>> 1; //相当于midIndex = (beginIndex + endIndex) / 2,但是效率会高些
if (data < dataset[midIndex]) {
endIndex = midIndex - 1;
} else if (data > dataset[midIndex]) {
beginIndex = midIndex + 1;
} else {
return midIndex;
}
}
return -1;
}
public static void main(String[] args) {
SortTest sortTest = new SortTest();
int[] array = sortTest.createArray();
System.out.println("==========冒泡排序后(正序)==========");
sortTest.bubbleSort(array, "asc");
System.out.println("==========冒泡排序后(倒序)==========");
sortTest.bubbleSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========倒转数组后==========");
sortTest.reverse(array);
array = sortTest.createArray();
System.out.println("==========选择排序后(正序)==========");
sortTest.selectSort(array, "asc");
System.out.println("==========选择排序后(倒序)==========");
sortTest.selectSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========插入排序后(正序)==========");
sortTest.insertSort(array, "asc");
System.out.println("==========插入排序后(倒序)==========");
sortTest.insertSort(array, "desc");
array = sortTest.createArray();
System.out.println("==========快速排序后(正序)==========");
sortTest.quickSort(array, "asc");
sortTest.printArray(array);
System.out.println("==========快速排序后(倒序)==========");
sortTest.quickSort(array, "desc");
sortTest.printArray(array);
System.out.println("==========数组二分查找==========");
System.out.println("您要找的数在第" + sortTest.binarySearch(array, 74)
+ "个位子。(下标从0计算)");
}
}