Time Limit: 10000/5000 MS (Java/Others)????Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 503????Accepted Submission(s): 192
?
Input The input consists of multiple test cases. Each case begins with a line containing a positive integer n that is the length of the sequence S, the next line contains n integers {s1, s2, s3, ...., sn}, 1 <= n <= 100000, 0 <= si <= 2^31.?
Output For each test case, output one line containing the number of nondecreasing subsequences you can find from the sequence S, the answer should % 1000000007.?
Sample Input3 1 2 3
?
Sample Output7????????? ????????? 题目大意:给你一个串,求这个串中不递减的子串有多少个?初一看,完全想不到会是用树状数组,但是他就是这么神奇,不递减就想到逆序数,逆序数又想到了树状数组,居然是用他。他是求子串有多少个,又要用到DP,这里DP就是用树状数组慢慢推上去,最后是注意是求和会溢出,记得%1000000007。 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227 代码:
#include <iostream> #include <stdio.h> #include <memory.h> #include <algorithm> using namespace std; struct node { int val, id; }a[100005]; bool cmp(node a, node b) { return a.val < b.val; } int b[100005], c[100005], s[100005], n; int lowbit(int i) { return i&(-i); } void update(int i, int x) { while(i <= n) { s[i] += x; if(s[i] >= 1000000007) s[i] %= 1000000007; i += lowbit(i); } } int sum(int i) { int sum = 0; while(i > 0) { sum += s[i]; if(sum >= 1000000007) sum %= 1000000007; i -= lowbit(i); } return sum; } int main() { int i, res; while(scanf("%d", &n) != EOF) { memset(b, 0, sizeof(b)); memset(s, 0, sizeof(s)); for(i = 1; i <= n; i++) { scanf("%d", &a[i].val); a[i].id = i; } sort(a+1, a+n+1, cmp); b[a[1].id] = 1; for(i = 2; i <= n; i++) { if(a[i].val != a[i-1].val) b[a[i].id] = i; else b[a[i].id] = b[a[i-1].id]; } res = 0; for(i = 1; i <= n; i++) { c[i] = sum(b[i]); update(b[i], c[i]+1); } printf("%d\n", sum(n)); } return 0; }?