Time Limit: 10000/5000 MS (Java/Others)????Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 503????Accepted Submission(s): 192
?
Input The input consists of multiple test cases. Each case begins with a line containing a positive integer n that is the length of the sequence S, the next line contains n integers {s1, s2, s3, ...., sn}, 1 <= n <= 100000, 0 <= si <= 2^31.?
Output For each test case, output one line containing the number of nondecreasing subsequences you can find from the sequence S, the answer should % 1000000007.?
Sample Input3 1 2 3
?
Sample Output7????????? ????????? 题目大意:给你一个串,求这个串中不递减的子串有多少个?初一看,完全想不到会是用树状数组,但是他就是这么神奇,不递减就想到逆序数,逆序数又想到了树状数组,居然是用他。他是求子串有多少个,又要用到DP,这里DP就是用树状数组慢慢推上去,最后是注意是求和会溢出,记得%1000000007。 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227 代码:
#include <iostream>
#include <stdio.h>
#include <memory.h>
#include <algorithm>
using namespace std;
struct node
{
int val, id;
}a[100005];
bool cmp(node a, node b)
{
return a.val < b.val;
}
int b[100005], c[100005], s[100005], n;
int lowbit(int i)
{
return i&(-i);
}
void update(int i, int x)
{
while(i <= n)
{
s[i] += x;
if(s[i] >= 1000000007)
s[i] %= 1000000007;
i += lowbit(i);
}
}
int sum(int i)
{
int sum = 0;
while(i > 0)
{
sum += s[i];
if(sum >= 1000000007)
sum %= 1000000007;
i -= lowbit(i);
}
return sum;
}
int main()
{
int i, res;
while(scanf("%d", &n) != EOF)
{
memset(b, 0, sizeof(b));
memset(s, 0, sizeof(s));
for(i = 1; i <= n; i++)
{
scanf("%d", &a[i].val);
a[i].id = i;
}
sort(a+1, a+n+1, cmp);
b[a[1].id] = 1;
for(i = 2; i <= n; i++)
{
if(a[i].val != a[i-1].val)
b[a[i].id] = i;
else b[a[i].id] = b[a[i-1].id];
}
res = 0;
for(i = 1; i <= n; i++)
{
c[i] = sum(b[i]);
update(b[i], c[i]+1);
}
printf("%d\n", sum(n));
}
return 0;
}
?