dubbo-go 中的 TPS Limit 设计与实现_JAVA_编程开发_程序员俱乐部

中国优秀的程序员网站程序员频道CXYCLUB技术地图
热搜:
更多>>
 
您所在的位置: 程序员俱乐部 > 编程开发 > JAVA > dubbo-go 中的 TPS Limit 设计与实现

dubbo-go 中的 TPS Limit 设计与实现

 2019/11/27 18:50:52  大涛学长  程序员俱乐部  我要评论(0)
  • 摘要:前言--ApacheDubbo是由阿里开源的一个RPC框架,除了基本的RPC功能以外,还提供了一整套的服务治理相关功能。目前它已经是Apache基金会下的顶级项目。而dubbo-go则是Dubbo的Go语言实现。最近在dubbo-go的todolist上发现,它还没有实现TPSLimit的模块,于是就抽空实现了这个部分。TPSlimit实际上就是限流,比如说限制一分钟内某个接口只能访问200次,超过这个次数,则会被拒绝服务。在Dubbo的Java版本上,只有一个实现
  • 标签:实现 设计
前言
--

Apache Dubbo 是由阿里开源的一个RPC框架,除了基本的 RPC 功能以外,还提供了一整套的服务治理相关功能。目前它已经是 Apache 基金会下的顶级项目。

而 dubbo-go 则是 Dubbo 的 Go 语言实现。

最近在 dubbo-go 的 todo list 上发现,它还没有实现 TPS Limit 的模块,于是就抽空实现了这个部分。

TPS limit 实际上就是限流,比如说限制一分钟内某个接口只能访问 200 次,超过这个次数,则会被拒绝服务。在 Dubbo 的 Java 版本上,只有一个实现,就是 DefaultTPSLimiter 。

DefaultTPSLimiter 是在服务级别上进行限流。虽然 Dubbo 的官方文档里面声称可以在 method 级别上进行限流,但是我看了一下它的源码,实际上这个是做不到的。当然,如果自己通过实现 Filter 接口来实现 method 级别的限流,那么自然是可以的——这样暴露了 Dubbo Java 版本实现的另外一个问题,就是 Dubbo 的 TpsLimitFilter 实现,是不允许接入自己 TpsLimiter 的实现的。这从它的源码也可以看出来:

![lADPDgQ9rN3oEmnNARnNAoA_640_281_jpg_620x10000q90g](https://yqfile.alicdn.com/1dd062ec6ca552f50965b312e8f334b8c8741c2e.jpeg)

它直接写死了 TpsLimiter 的实现。

这个实现的目前只是合并到了 develop 上,等下次发布正式版本的时候才会发布出来。

GitHub:?[https://github.com/apache/dubbo-go/pull/237](https://yq.aliyun.com/go/articleRenderRedirect?url=https%3A%2F%2Fgithub.com%2Fapache%2Fdubbo-go%2Fpull%2F237)

设计思路
----

于是我大概参考了一下 Dubbo 已有的实现,做了一点改进。

Dubbo 里面的核心抽象是 TpsLimiter 接口。 TpsLimitFilter 只是简单调用了一下这个接口的方法而已:

![lADPDgQ9rN3oEmrM8s0CgA_640_242_jpg_620x10000q90g](https://yqfile.alicdn.com/625773a3412a6025a4d8a264f4cb85384cf8e59a.jpeg)

这个抽象是很棒的。但是还欠缺了一些抽象。

实际上,一个 TPS Limit 就要解决三个问题:

*   对什么东西进行 limit 。比如说,对服务进行限流,或者对某个方法进行限流,或者对IP进行限流,或者对用户进行限流;
*   如何判断已经 over limitation 。这是从算法层面上考虑,即用什么算法来判断某个调用进来的时候,已经超过配置的上限了;
*   被拒绝之后该如何处理。如果一个请求被断定为已经 over limititation 了,那么该怎么处理;

所以在 TpsLimiter 接口的基础上,我再加了两个抽象:

![lADPDgQ9rN3oEmxXzQJ3_631_87_jpg_620x10000q90g](https://yqfile.alicdn.com/57a063e031e39c783d44cf0fc38c8587cdc42a8a.jpeg)

TpsLimiter

![lADPDgQ9rN3oEm9KzQIw_560_74_jpg_620x10000q90g](https://yqfile.alicdn.com/0b95bc37ccfff112c185f941e28ef2e9f9af705f.jpeg)

TpsLimitStrategy

![lADPDgQ9rN3oEnBFzQKA_640_69_jpg_620x10000q90g](https://yqfile.alicdn.com/bf260ca27fa216cc170f1bf4b0dc14915b0d1e7a.jpeg)

RejectedExecutionHandler

TpsLimiter 对应到 Java 的 TpsLimiter ,两者是差不多。在我的设想里面,它既是顶级入口,还需要承担解决第一个问题的职责。

而 TpsLimitStrategy 则是第二个问题的抽象的接口定义。它代表的是纯粹的算法。该接口完全没有参数,实际上,所有的实现需要维护自身的状态——对于大部分实现而言,它大概只需要获取一下系统时间戳,所以不需要参数。

最后一个接口 RejectedExecutionHandler 代表的是拒绝策略。在 TpsLimitFilter 里面,如果它调用 TpsLimiter 的实现,发现该请求被拒绝,那么就会使用该接口的实现来获取一个返回值,返回给客户端。

实现
--

其实实现没太多好谈的。不过有一些微妙的地方,我虽然在代码里面注释了,但是我觉得在这里再多说一点也是可以的。

首先提及的就是拒绝策略 RejectedExecutionHandler ,我就是提供了一种实现,就是随便 log 了一下,什么都没做。因为这个东西是强业务相关的,我也不能提供更加多的通用的实现。

方法与服务双重支持的 TpsLimiter
---------------------

TpsLimiter 我只有一个实现,那就是 MethodServiceTpsLimiterImpl 。它就是根据配置,如果方法级别配置了参数,那么会在方法级别上进行限流。否则,如果在服务级别( ServiceKey )上有配置,那么会在服务级别进行限流。

举个最复杂的例子:服务 A 限制 100 ,有四个方法,方法 M1 配置限制 40 ,方法 M2 和方法 M3 无配置,方法M4配置限制 -1 :那么方法 M1 会单独限流 40 ; M2 和 M3 合并统计,被限制在 100 ;方法 M4 则会被忽略。

用户可以配置具体的算法。比如说使用我接下来说的,我已经实现的三种实现。

FixedWindow 和 ThreadSafeFixedWindow
-----------------------------------

FixedWindow 直接对应到 Java 的 DefaultTpsLimiter 。它采用的是 fixed-window 算法:比如说配置了一分钟内只能调用 100 次。假如从 00:00 开始计时,那么 00:00-01:00 内,只能调用 100 次。只有到达 01:00 ,才会开启新的窗口 01:00-02:00 。如图:

![lADPDgQ9rN3oEnF0zQIf_543_116_jpg_620x10000q90g](https://yqfile.alicdn.com/cec16540222aad08375ca65b20dc43efca387f66.jpeg) 
**Fixed-Window图示**

![lADPDgQ9rN3oEnTM_s0CgA_640_254_jpg_620x10000q90g](https://yqfile.alicdn.com/6d7c5734fce641df0d2959a825957945eb294811.jpeg) 
**Fixed-Window实现**

这里有一个很有意思的地方。就是这个实现,是一个几乎线程安全但是其实并不是线程安全的实现。

在所有的实现里面,它是最为简单,而且性能最高的。我在衡量了一番之后,还是没把它做成线程安全的。事实上, Java 版本的也不是线程安全的。

它只会在多个线程通过第 67 行的检测之后,才会出现并发问题,这个时候就不是线程安全了。但是在最后的 return 语句中,那一整个是线程安全的。它因为不断计数往上加,所以多个线程同时跑到这里,其实不会有什么问题。

现在我要揭露一个最为奇诡的特性了:并发越高,那么这个 race condition 就越严重,也就是说越不安全。

但是从实际使用角度而言,有极端 TPS 的还是比较少的。对于那些 TPS 只有几百每秒的,是没什么问题的。

为了保持和 Dubbo 一致的特性,我把它作为默认的实现。

此外,我还为它搞了一个线程安全版本,也就是 
ThreadSafeFixedWindowTpsLimitStrategyImpl ,只是简单的用 sync 封装了一下,可以看做是一个 Decorator 模式的应用。

如果强求线程安全,可以考虑使用这个。

SlidingWindow
-------------

这是我比较喜欢的实现。它跟网络协议里面的滑动窗口算法在理念上是比较接近的。 
![lADPDgQ9rN3oEnXMms0CMA_560_154_jpg_620x10000q90g](https://yqfile.alicdn.com/b4de4e7f741089b342772c4f062d373a72ebf2fe.jpeg)

具体来说,假如我设置的同样是一分钟 1000 次,它统计的永远是从当前时间点往前回溯一分钟内,已经被调用了多少次。如果这一分钟内,调用次数没超过 1000 ,请求会被处理,如果已经超过,那么就会拒绝。

我再来描述一下, SldingWindow 和 FixedWindow 两种算法的区别。这两者很多人会搞混。假如当前的时间戳是 00:00 ,两个算法同时收到了第一个请求,开启第一个时间窗口。

那么 FixedWindow 就是 00:00-01:00 是第一个窗口,接下来依次是 01:00-02:00 , 02:00-03:00 , ...。当然假如说 01:00 之后的三十秒内都没有请求,在 01:31 又来了一个请求,那么时间窗口就是 01:31-02:31 。

而 SildingWindow 则没有这种概念。假如在 01:30 收到一个请求,那么 SlidingWindow 统计的则是 00:30-01:30 内有没有达到 1000 次。它永远计算的都是接收到请求的那一刻往前回溯一分钟的请求数量。

如果还是觉得有困难,那么简单来说就是 FixedWindow 往后看一分钟, SlidingWindow 回溯一分钟。 
这个说法并不严谨,只是为了方便理解。 
在真正写这个实现的时候,我稍微改了一点点:

![lADPDgQ9rN3oEnfNAdrNAm8_623_474_jpg_620x10000q90g](https://yqfile.alicdn.com/f116ceb903355243233cc4233ac64011e153f3ba.jpeg)

我用了一个队列来保存每次访问的时间戳。一般的写法,都是请求进来,先把已经不在窗口时间内的时间戳删掉,然后统计剩下的数量,也就是后面的 slow path 的那一堆逻辑。

但是我改了的一点是,我进来直接统计队列里面的数量——也就是请求数量,如果都小于上限,那么我可以直接返回 true ,即 quick path 。

这种改进的核心就是:我只有在检测到当前队列里面有超过上限数量的请求数量时候,才会尝试删除已经不在窗口内的时间戳。

这其实就是,是每个请求过来,我都清理一下队列呢?还是只有队列元素超出数量了,我才清理呢?我选择的是后者。

我认为这是一种改进……当然从本质上来说,整体开销是没有减少的——因为 golang 语言里面 List 的实现,一次多删除几个,和每次删除一个,多删几次,并没有多大的区别。

算法总结
----

无论是 FixedWindow 算法还是 SlidingWindow 算法都有一个固有的缺陷,就是这个时间窗口难控制。

我们设想一下,假如说我们把时间窗口设置为一分钟,允许 1000 次调用。然而,在前十秒的时候就调用了 1000 次。在后面的五十秒,服务器虽然将所有的请求都处理完了,然是因为窗口还没到新窗口,所以这个时间段过来的请求,全部会被拒绝。

解决的方案就是调小时间窗口,比如调整到一秒。但是时间窗口的缩小,会导致 FixedWindow 算法的 race condition 情况加剧。

那些没有实现的
-------

**基于特定业务对象的限流**

举例来说,某些特殊业务用的针对用户 ID 进行限流和针对 IP 进行限流,我就没有在 dubbo-go 里面实现。有需要的可以通过实现 TpsLimiter 接口来完成。

**全局 TPS limit**

这篇文章之前讨论的都是单机限流。如果全局限流,比如说针对某个客户,它购买的服务是每分钟调用 100 次,那么就需要全局限流——虽然这种 case 都不会用 Filter 方案,而是另外做一个 API 接入控制。

比如说,很常用的使用 Redis 进行限流的。针对某个客户,一分钟只能访问 100 次,那我就用客户 ID 做 key , value 设置成 List ,每次调用过来,随便塞一个值进去,设置过期时间一分钟。那么每次统计只需要统计当前 key 的存活的值的数量就可以了。 
这种我也没实现,因为好像没什么需求。国内讨论 TPS limit 都是讨论单机 TPS limit 比较多。

这个同样可以通过实现 TpsLimiter 接口来实现。

**Leaky Bucket 算法**

这个本来可以是 TpsLimitStrategy 的一种实现的。后来我觉得,它其实并没有特别大的优势——虽然号称可以做到均匀,但是其实并做不到真正的均匀。通过调整 SlidingWindow 的窗口大小,是可以接近它宣称的均匀消费的效果的。比如说调整到一秒,那其实就已经很均匀了。而这并不会带来多少额外的开销。

**作者信息:**邓明,毕业于南京大学,就职于eBay Payment部门,负责退款业务开发

 

 

[原文链接](https://yq.aliyun.com/articles/726804?utm_content=g_1000089998)

本文为云栖社区原创内容,未经允许不得转载。
上一篇: Sentinel 1.7.0 发布,支持 Envoy 集群流量控制 下一篇: 没有下一篇了!
发表评论
用户名: 匿名