针对民主党和共和党选区的人们更喜欢轿车还是皮卡这些事,市场研究人员和政治分析师们已经研究了几十年。不过近日,斯坦福大学研究人员们通过一个雄心勃勃的项目 —— 分析谷歌街景上的 5000 万张照片和地理位置数据 —— 也得出了相同的结论。在新近发展的人工智能技术的帮助下,研究人员能够分析大量的图像、提取可以进行排序和挖掘的数据来预测一些事情,比如某个社区的收入水平、政治倾向、购物习惯等。
文章截图 - 1
在斯坦福大学的这项研究中,计算机收集了数以百万计的汽车图像,其中包含了制造商和具体型号等信息。
为这项研究提供建议的贝勒医学院基因组研究中心的计算机科学家 Erez Lieberman Aiden 指出:“刹那间,我们就可以对图像进行同样的文本分析”。
Mr. Lieberman Aiden 表示,计算机和人类一样,都可以通过读取和观察这两种截然不同的方式来理解世界。从这层意义上来说,‘计算机被捆绑在身后的双手已经被释放’。
文章截图 - 2
对于人工智能来说,文本是更容易处理的信息,因为英语单词就是由 26 个字母组成的离散字符。这让它更接近计算机的自然语言,而不是面对一团混乱的图像。
近年来,由大型科技公司主导开发的图像识别技术已经迎来了很大的进步。而斯坦福大学的这项研究,让我们得以一瞥这方面的潜力。
将车辆制造商、型号、年份等信息从图像中提取出来,然后与其它数据来源进行联系,该项目得以预测许多“有趣的事实”,比如邻里间的污染和表决方式。
文章截图 - 3
研究领导人 Timnit Gebru 表示:“图像数据的使用,将催生一套社会分析的新工具”。有关这项研究的详情,已经分阶段发表。
比如在最近的 11 月份,他们就在《美国国家科学院学报》上,发表了一篇题为《借助深度学习和谷歌街景来预估全美社区人口组成》的文章。